Investigation of borehole cross-dipole flexural dispersion crossover through numerical modeling

نویسندگان

  • Arthur Cheng
  • Michael C. Fehler
  • Xinding Fang
چکیده

Crossover of the dispersion of flexural waves recorded in borehole cross-dipole measurements is interpreted as an indicator of stress-induced anisotropy around a circular borehole in formations that are isotropic in the absence of stresses. We have investigated different factors that influence flexural wave dispersion. Through numerical modeling, we determined that for a circular borehole surrounded by an isotropic formation that is subjected to an anisotropic stress field, the dipole flexural dispersion crossover is detectable only when the formation is very compliant. This might happen only in the shallow subsurface or in zones having high pore pressure. However, we found that dipole dispersion crossover can also result from the combined effect of formation intrinsic anisotropy and borehole elongation. We found that a small elongation on the wellbore and very weak intrinsic anisotropy can result in a resolvable crossover in flexural dispersion that might be erroneously interpreted as borehole stress-induced anisotropy. A thorough and correct interpretation of flexural dispersion crossover thus has to take into account the effects of stress-induced and intrinsic anisotropy and borehole cross-sectional geometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Inversion for Fast Azimuth and Dispersion of Borehole Flexural Waves Using Cross-Dipole Data

This paper presents an inversion algorithm for obtaining azimuthal angle and borehole flexural wave dispersion in an anisotropic formation. The technique constructs an objective function that can be minimized using standard non-linear inversion methods, which is sensitive to both dispersion and rotation. The method is tested on both synthetic and real borehole data and gives good agreement with...

متن کامل

Propagation of Flexural Waves in an Azimuthally Anisotropic Borehole Model

Flexural waves generated by a dipole source have been studied theoretically and used to estimate the shear parameters of a formation. The basic principles and main properties of flexural waves propagating in a borehole are reviewed in this paper. A mono/dipole transducer made of a PZT piezoelectric tube is used for laboratory experiments in borehole models. The radiation pattern of the dipole s...

متن کامل

Polarization of Flexural Waves in an Anisotropic Borehole Model

Two modes of flexural waves can be generated by a dipole source in an anisotropic borehole. Their velocities are related to those of the fast and slow shear waves in the formation. The particle motions and the polarization diagrams of the fast and slow flexural waves are measured in borehole models made of phenolite materials with transverse isotropy or orthorhombic anisotropy. The experimental...

متن کامل

Flexural Waves in an Anisotropic Hard Formation Borehole

To investigate the propagation of flexural waves in a borehole surrounded by an azimuthally anisotropic hard formation, we made an ultrasonic borehole model of Delabole slate with very strong anisotropy. The axial and azimuthal acoustic fields generated by a dipole source were measured in the fluid-filled borehole. The results show that there are three dominant wave modes: fast and slow flexura...

متن کامل

Acoustic Wave Propagation in and around a Fluid-filled Borehole of Irregular Cross-section

Boreholes with 10% or more ellipticity are not uncommon. In this paper, we consider the coupling of an incident elastic wave into a borehole of irregular cross-section and investigate the cross-mode coupling phenomenon in sonic well logging in the presence of borehole irregularity. The mode-matching method is used. Different from its original formulation, we employ the Reichel et al. algorithm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014